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1. INTRODUCTION

Exact correspondences between buckling and vibration eigenvalues of membranes and
plates have been of renewed interest, recently. The establishment of such results enables one
to obtain plate eigenvalues in terms of available membrane results. Such linking
relationships have been found for single-layer homogeneous plates [1}5], sandwich plates
[6}8], laminated plates [9] and functionally graded plates [8, 10] using di!erent plate
theories. However, these existing results are only limited to buckling and vibration of plates.

The present work further develops the links between vibration eigenvalues predicted by
di!erent theories. These correspondences are extended from a #at plate to a simply
supported spherical shallow shell on a Winkler}Pasternak elastic foundation. The material
of the shell is homogeneous and transversely isotropic. In analogy with a vibrating #at
membrane, exact vibration frequencies of a homogeneous spherical shallow shell of
polygonal planform are found using the classical theory and the "rst order and third order
shear deformation theories. Some available results for single-layer homogeneous plates can
be retrieved from the present results.

2. GOVERNING EQUATIONS

Consider a homogeneous spherical shallow shell of uniform thickness h, whose projected
planform is polygonal. The rectangular Cartesian planform co-ordinates x

1
and x

2
are

introduced in the deformation analysis of the shallow shell. The reference surface is the
middle surface of the shell de"ned by x

3
"0, and x

3
denotes the thickness co-ordinate

measured from the undeformed middle surface. Hereafter, a comma followed by a subscript
i denotes the partial derivative with respect to x

i
, and a repeated index implies summation

over the range of the index with Latin indices ranging from 1 to 3 and Greek indices from
1 to 2.

The following third order displacement "eld is assumed for the shallow shell:
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and ua are independent of x
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The displacement "eld (1) is essentially the same as that of Reddy's third order theory for
composite laminated plates [11]. It can also be seen that by taking g(x

3
)"x

3
and g(x

3
)"0,

the displacement "eld (1) will become that of the "rst order shear deformation theory and of
the classical theory respectively [12].

Denoting k and G as the Winkler}Pasternak elastic foundation parameters [13], r the
middle surface radius of the spherical shallow shell, o the mass density, and u an angular
frequency, the time-harmonic linear governing equations for the spherical shallow shell
resting on a Winkler}Pasternak elastic foundation are expressed as
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In equations (3)} (5) and thereafter, the time-harmonic factor exp(iut) has been omitted and
each physical quantity refers to its spatial part. For the classical theory and the "rst order
theory to be included, the integrals in equation (6) are not explicitly performed. Speci"cally,
g(x
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)"x

3
leads to i

1
"i

2
"i

3
for the "rst order theory and g(x

3
)"0 leads to i

2
"i

3
"0

for the classical theory.
The material properties for a transversely isotropic material are
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where dab is the Kronecker delta, E and l are Young's modulus and the Poisson ratio in the
surface of isotropy, and k is the shear modulus normal to the isotropy surface. In particular,
k"E/2(1#l) for an isotropic material.

Equations (7) may be written alternatively in terms of displacements as
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where
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With equations (11), the governing equations (3)}(5) are expressed in terms of "ve
displacement functions ua , u

3
and ua as
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The following matrix equation can be obtained through equation (14) and di!erentiating
equations (13) and (15) with respect to xa ,

KX"0, (16)

where
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3
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and K"(K
IJ

) is a 3]3 operator matrix in which its elements, expressed in terms of the
two-dimensional Laplace operator + 2, are
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Furthermore, eliminating ua,a and ua,a from equation (16) gives
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where j
1
, j

2
, j

3
and j

4
are four roots of the quartic equation

det [K(!j)]"0. (20)

Equation (19) is the characteristic equation from which the eigenvalues and associated
eigenfunctions for vibration problems of the homogeneous spherical shallow shell can be
solved under given boundary conditions.

3. SIMPLY SUPPORTED EDGES OF A SPHERICAL SHALLOW SHELL
OF POLYGONAL PLANFORM

Assume that the homogeneous spherical shallow shell is simply supported on its edges for
which the boundary conditions are
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where the upper case subscripts N and ¹ denote, respectively, normal and tangential
directions to the boundary, and the summation convention does not apply to them. For
a spherical shallow shell of polygonal planform, equation (21)

4
is identically satis"ed due to

equation (21)
1
. In terms of equations (11)

1}3
and (21)

1}3
, the boundary conditions (21)

5}7
reduce to
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Therefore, the boundary conditions for the simply supported spherical shallow shell of
polygonal planform can be expressed as
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and furthermore, by using equations (16),
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3
"0, + 2Jua,a"0 (J"0, 1, 2,2). (24)

4. MEMBRANE ANALOGY

In order to facilitate subsequent analysis, equation (19) is written as

(+ 2#j
1
)H

1
"0, H

1
,a3i

0
(i2
2
!i

1
i
3
) (+ 2#j

2
) (+ 2#j

3
) (+ 2#j

4
)u

3
, (25)

where j
1

can be any one of the four roots of the quartic equation (20). In view of equations
(24)

2
and (25)

2
, the Helmholtz equation (25)

1
is shown to be associated with the following

boundary condition:

H
1
"0. (26)

Therefore, the eigenvalue problem for the third order theory of a homogeneous spherical
shallow shell of polygonal planform reduces to Dirichlet's boundary value problem,
equation (25)

1
and the boundary condition (26). This boundary value problem is

mathematically similar to a uniform membrane whose shape coincides with the same
contour as the shell planform, is "xed at the edges and executes small transverse vibration.
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Thus, the eigenvalue j
1

may be designated as that of a vibrating membrane with the same
contour as the shell planform, i.e.

j
1
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M
, (27)

where j
M
"o

M
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M
/> is the eigenvalue of the membrane vibration problem [14], o

M
, > and

u
M

are the mass density, constant tension and vibration frequency of the membrane
respectively. Because j

1
is a root of the quadratic equation (20), substituting equation (27)

into equation (20) yields
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or, after some rearrangements,
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For the free-vibration problem using the third order theory for the homogeneous
spherical shallow shell of polygonal planform, the eigenfrequencies can be simply obtained
from equation (29), which is a cubic equation with respect to u2 and thus gives three
eigenfrequencies. The eigenvectors associated with these vibration frequencies exhibit
#exural and thickness-shear modes, as well as a stretching mode. The spherical shallow shell
will execute a motion in coupled form of the stretching, #exural and thickness-shear modes.

5. THE FIRST ORDER THEORY

When taking g(x
3
)"x

3
, it can be seen from equation (1) that the displacement "eld is

essentially the one for the "rst order theory. It follows from equation (6) that

i
1
"i

2
"i

3
"h3/12. (31)

In addition, it is conventional to introduce the shear correction factor i in the "rst order
theory, i.e. the parameter c de"ned by equation (12)

3
should be replaced by

c
F
"ikh. (32)

The characteristic equation using the "rst order theory for the homogeneous spherical
shallow shell of polygonal planform is the same as the matrix equation (16), which upon
eliminating ua,a and ua,a reduces to a cubic equation with respect to the Laplace operator
+ 2, i.e. a degenerated form of equation (19) due to equation (31).
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Although the boundary conditions for simply supported edges are slightly di!erent from
those in equations (24), it can be shown by following the same procedure as in section 4 that
the free-vibration frequencies of the homogeneous spherical shallow shell of polygonal
planform are given by the same equation (29) wherein the relations (31) should be
incorporated and c should be replaced by c

F
.

6. THE CLASSICAL THEORY

Equation (1) with g(x
3
)"0 precisely represents the displacement "eld of the classical

Kirchho! theory for the homogeneous spherical shallow shell. In this case,

i
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3
"0, c"0. (33)

Similarly, the free vibration frequency u2
K

can be solved from
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Note that only two free vibration frequencies are predicted by the classical theory. This is
because of the assumption that a normal to the mid-surface of the shell remains normal to
mid-surface during deformation. Consequently, there is no thickness-shear motion in the
classical theory.
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